

OCR (A) Biology A-level 6.2.1 - Cloning and biotechnology

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

How can we produce natural clones of plants?

How can we produce natural clones of plants?

Vegetative propagation. Part of a plant is separated, then develops into a new plant genetically identical to the original. English Elm does not produce viable seed, so naturally self-propagates using its roots.

How should a plant cutting be taken for cloning?

How should a plant cutting be taken for cloning?

Stem is cut between the leaf and nodes. Replanted and allowed to grow, sometimes with the use of plant hormones.

How can we produce artificial clones of plants?

How can we produce artificial clones of plants?

- Tissue culture; sample placed on various nutrient-containing mediums to encourage cell division and shoot growth.
- Micropropagation; material produced from tissue culture is rapidly multiplied to produce large numbers of plants.

Evaluate the use of artificial plant cloning in agriculture.

Evaluate the use of artificial plant cloning in agriculture.

- + Large number of plants can be produced regardless of weather conditions.
 - Reduces genetic variation, making them susceptible to disease.

Give an example of natural cloning in animals.

Give an example of natural cloning in animals.

Monozygotic twins; embryo splits during development to produce two genetically identical individuals.

How can we produce artificial clones of animals?

How can we produce artificial clones of animals?

 Somatic cell nuclear transfer; differentiated cell from parent fused with an enucleated egg cell. The cell develops into an embryo and can be implanted into a womb. • Embryo splitting; same process by which twins form, performed artificially.

Give arguments surrounding cloning in animals.

Give arguments surrounding cloning in animals.

- + Quick process suited to the growing population of Earth.
- + Can preserve endangered species.

www.pmt.education

- Cloned animals often suffer from health problems.

D PMTEducation

- Low genetic diversity.

Why are microorganisms suited for use in biotechnological processes?

Why are microorganisms suited for use in biotechnological processes?

- Rapid growth in a variety of environmental conditions.
- Can be genetically engineered.

www.pmt.education

• Reduces use of chemicals, beneficial to the environment.

D PMTEducation

Give some ways microorganisms are used in biotechnological processes.

Give some ways microorganisms are used in biotechnological processes.

- Food; baking, brewing, yogurt, cheese
- Medicine; penicillin, insulin
- Environmental; removing pollution (bioremediation)

Give advantages of using microorganisms to produce food for human consumption.

Give advantages of using microorganisms to produce food for human consumption.

- + Production rate easily varied
- + Not dependent on climate
- + Long-lasting
- + Uses waste products

Give disadvantages of using microorganisms to produce food for human consumption.

Give disadvantages of using microorganisms to produce food for human consumption.

- Lack of flavour.
- Proteins must be isolated and purified.
- Contains different amino acids to animal proteins.

Describe the technique that should be used to culture microorganisms.

Describe the technique that should be used to culture microorganisms.

Aseptic technique; everything must be kept completely sterile so that no unwanted microorganisms are present in the culture.

Summarise the three steps of growing microorganisms.

Summarise the three steps of growing microorganisms.

- 1. Sterilisation; part of the aseptic technique.
- 2. Inoculation; microorganism introduced to agar plate by streaking, seeding, or spreading.

D

PMTEducation

3. Incubation; placed in warm environment for

www.pmt.education

24-48 hours to grow.

Differentiate between batch and continuous fermentation.

Differentiate between batch and continuous fermentation.

- Batch= closed environment, competition for resources, maintains culture in stationary phase, easy to set up, less efficient.
- Continuous= products continually removed, maintains culture in log phase, difficult to set up, more efficient.

How are the growth conditions manipulated to maximise yield?

How are the growth conditions manipulated to maximise yield?

- Temperature maintained at optimum.
- Sufficient nutrient supply.
- Aerobic conditions to prevent products of anaerobic respiration.
- pH kept constant to maximise enzyme activity.

Describe the growth curve of a microorganism in a closed culture.

Describe the phases of a growth curve of a microorganism in a closed culture.

- Lag= cells increase in size and take in water. Population constant.
- Log= cells divide. Population increases exponentially.
- Stationary= nutrient levels decrease, slowing growth rate. Population stabilizes.
- Death= toxic metabolites increase to a point that kills cells. Population declines.

Label the phases on this graph of population plotted against time.

Label the phases on this graph of population plotted against time.

Give the formula for bacterial growth.

Give the formula for bacterial growth.

- $N = N_0 \times 2^n$
- N = number of bacteria currently in the population
- N₀ = number of bacteria in the population at the beginning

DOG PMTEducation

• ⁿ = number of divisions

What is an immobilised enzyme?

What is an immobilised enzyme?

An enzyme attached to an inert material in order to restrict its movement and hold it in place during a reaction so that it can be reused.

Give methods of immobilising enzymes.

Give methods of immobilising enzymes.

- Bonding= enzyme binds with support ionically (adsorption) or covalently.
- 2. Entrapment= enzyme placed in a semi-permeable material that allows diffusion of the substrate and product.
- 3. Membrane separation= a partially permeable membrane separates enzyme from substrate.

Give uses of immobilised enzymes.

Give uses of immobilised enzymes.

- Glucose to fructose conversion.
- Semi-synthetic penicillin production.
- Lactose to glucose/galactose conversion.
- Pure samples of amino acids.
- Dextrins to glucose conversion.

Evaluate the use of immobilised enzymes.

Evaluate the use of immobilised enzymes.

- + Product is not contaminated by enzyme, so does not need to be purified.
- + Enzymes can be reused.
- + Enzymes are protected from harsh environment.
- Expensive.
- Reaction rate is slower as enzymes cannot move.

